The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X X 1 1 1 1 1 1 X^2 1 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 0 X^3 0 X^3 0 X^3 X^2 X^2 X^2 X^2 0 X^3 0 X^3+X^2 0 X^3+X^2 0 X^3 X^3 X^3+X^2 0 0 X^3 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 0 X^3 X^3 X^3 0 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 0 0 0 X^3 X^3 X^3 0 0 X^3 generates a code of length 40 over Z2[X]/(X^4) who´s minimum homogenous weight is 38. Homogenous weight enumerator: w(x)=1x^0+9x^38+54x^39+141x^40+32x^41+6x^42+8x^43+2x^44+1x^46+2x^55 The gray image is a linear code over GF(2) with n=320, k=8 and d=152. This code was found by Heurico 1.16 in 0.047 seconds.